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Automatic detection of e-Callisto solar radio bursts by Deep Neural Networks
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Abstract

The aim of this work is to build a complete system based
on deep neural networks for automated burst recognition in
radio spectrograms delivered by ground-based solar obser-
vatories.

In this summary paper, the automatic system is described
stage by stage and preliminary results for a sample obser-
vatory are presented.

1 Introduction

Continuous monitoring of solar activity at all wavelengths
is a key tool for space weather prediction. Solar radio bursts
and flaring episodes have an impact on Earth as they cause
disturbances in electric power lines, satellite communica-
tion or GPS location.

For this purpose, solar event reports are compiled daily in
near-real time including observations at radio frequencies
(Figure 1), as well as in the X-ray and optical ranges, con-
tributed by both ground-based and satellite-borne instru-
ments from teams all around the world.

Figure 1. Number of solar radio events per year compiled
by NOAA’s Space Weather Prediction Center since 1996,
showing solar activity cycles #23, 24 and the onset of 25.

The e-Callisto International Network of Solar Radio Spec-
trometers [1] comprises over a hundred instruments around
the globe which altogether upload thousands of spectro-
grams per day to its central database. For that reason, man-

ual classification of solar bursts is a challenging task. How-
ever, the number of articles in the field of automation of
solar burst detection is still scarce.

Thus, in this summary paper we describe the stages of
a complete automated system: pre-processing of spectro-
grams, conversion to images (PNG files), training of clas-
sification models based on convolutional neural networks
and performance evaluation.

2 Pre-processing

2.1 Raw data

As mentioned before, our raw data are spectrograms and
our goal is to find those in which a burst occurs. These
spectrograms are FITS files (Flexible Image Transport
System) which can be found on the e-Callisto website
(http://www.e-callisto.org/Data/data.html). This database
contains files since 2012.

Typically, these FITS files, or runs, have a resolution of 200
pixels in the vertical axis (corresponding to the range of fre-
quencies in MHz, which is not the same for all observato-
ries) and 3600 pixels in the horizontal axis (corresponding
to time in seconds). Each run has a duration of 15 minutes,
so every pixel spans 0.25 seconds. Finally, the intensity of
the signal is represented by a color code.

2.2 Data processing

Our objective with pre-processing is to make the most
meaningful features of the input spectrograms stand out for
later training of the artificial neural network. Also, since
these networks are computing systems inspired by biolog-
ical networks in the human brain, we decided to turn the
spectrograms into images in which we, as humans, are able
to distinguish ‘Bursts‘ from ‘NotBursts‘. Pre-processing is
performed via Python scripts.

Firstly, in order to eliminate recurring interference and
highlight transient phenomena, we apply background sub-
traction of the average intensity in every frequency channel.
Next, we split the spectrogram into 15 different parts (one
for each minute, Figure 2). This approach makes bursts and



other phenomena easier to spot. Finally, we use the Python
library pyplot to save the spectrograms as PNG files with
a resolution of 256 × 256 pixels –the file type and resolu-
tion required by AlexNet [2] , the neural network used for
training.

Figure 2. Cropping of an image in 15 parts – Glasgow, 8th
November 2021, 13:00 to 13:15 UTC.

3 Training of classification models

We train neural networks using DIGITS: NVIDIA Deep
Learning GPU Training System [3]. This is an interac-
tive web environment with many different options to focus
rapidly on training highly accurate deep neural networks
(DNNs) for image classification [4].

Regarding the classification models, since the instruments
in the e-Callisto network operate at different frequency
ranges and each location has its own peculiar interference
patterns, we currently build observatory-specific models
where all the images entering the training dataset belong to
the given observatory. So far we have built models for those
instruments with a greater amount of recorded bursts, an in-
formation which is also available on the e-Callisto website.
In the near future we intend to build models for groups of
observatories with similar features.

All throughout the training and evaluation process,
the truth of a prediction (True/False Positive/Negative)
is assessed using the Callisto Event Reports avail-
able (http://soleil.i4ds.ch/solarradio/data/BurstLists/2010-
yyyy_Monstein/). These are monthly ‘Burst‘ lists compiled
daily by an experienced analyst through visual inspection
of each individual spectrogram image, a check of whether
the burst has been detected by other e-Callisto stations and
a cross-match with the corresponding NOAA Solar Event
Report [5]. Years of careful, and tiring, inspection of thou-
sands of these images have led to a good knowledge of the
topology and features (in the time-frequency-intensity 3D
space) of different types of burst signals and of the many
types of fake signals caused by natural and man-made ra-
dio noise (see Catalog of Dynamic Electromagnetic Spectra
[6]).

We train our models in two rounds. In the first one, an initial

training dataset yields a base model which is then tested on
a separate dataset for performance evaluation expressed via
a so-called confusion matrix (see Tables 1 and 2).

This way we also identify the most common kinds of pre-
diction errors, both as False Negatives (FN) and False Pos-
itives (FP). In the second round we use that information to
try and improve performance by adding relevant images to
the training dataset. We also mark the base model as pre-
trained to be used as a network for this second round, as pre-
trained models have better-distributed and quasi-optimized
weights in their convolutional neural network layers, which
saves computing time and allows for a better performance.
This procedure allows us to improve the model signifi-
cantly.

3.1 Training datasets

To train a model we need a dataset with a large amount
of images of the two classes: Burst and NotBurst. The
same Python script we use to pre-process the spectrograms
is used to download all the FITS files of a given day and e-
Callisto instrument and to convert them into PNG images.

In particular, for this summary paper we will discuss the
results of a test on a model for the observatory in Glasgow.
The initial training dataset contains images from May 22
and 24, 2021, two dates when the Sun was very active.

3.2 Training specifications

As it is well known, when training a classification model
you need to split your data into a training and a testing set.
Also, within the training set one part is used for validation.
In our case we will use 5% for testing and 25% of the train-
ing set for validation.

Regarding the solver options in training, we set 100 train-
ing epochs and a validation interval of 10 epochs. Blob for-
mat is NVCaffe [7] and the solver type is SGD (Stochastic
Gradient System) with a Base Learning Rate of 0.01. The
neural network used is AlexNet.

4 Performance evaluation

4.1 Metrics for performance

In this section we will present the main metrics used to
quantify the performance of the models. First, we introduce
some concepts:

• Positive (P): we denote the class Burst as positive.

• Negative (N): the class NotBurst.

• True positive (TP): predicted class is Burst; actual
class is Burst.



• False positive (FP): predicted class is Burst; actual
class is NotBurst.

• True negative (TN): predicted class is NotBurst; ac-
tual class is NotBurst.

• False negative (FN): predicted class is NotBurst; ac-
tual class is Burst.

• Confusion matrix: a table for comparison of predic-
tions vs actual classes.

From these concepts we compute some relevant metrics:

• True positive rate (probability of detection): ratio
of true positives to the actual number of positives, TP

P .

• True negative rate (specificity): ratio of true nega-
tives to actual negatives, TN

N .

• False positive rate (probability of false detection):
ratio of false positives to actual negatives, FP

N .

• False negative rate (probability of a miss): ratio of
false negatives to the actual number of positives, FN

P .

• Accuracy: TP+TN
P+N . This metric provides us with an

overall idea of the performance.

4.2 Results

Results of the first-round test are presented in the following
confusion matrix with the total numbers, and percentage
rates in parentheses, of:
Top row: True Positives and False Negatives (red);
Bottom row: False Positives (yellow) and True Negatives.

Confusion matrix Predicted Positives Predicted Negatives
Actual Positives 21 (84%) 4 (16%)
Actual Negatives 56 (11%) 436 (89%)

Table 1. Total number (percentage rates) of TP, FN (red),
FP (yellow) and TN.

As we can see, in the first round 84% of the actual positives
listed in the reports were recognized, with a similar success
rate (89%) for the actual negatives. The accuracy obtained
is 88%.

There are four false negatives (16%) in total. A closer look
at the missed bursts reveals, in one case, the end of a 20-
minute-long storm which started and was correctly identi-
fied by the system in the previous run; and two cases of
very weak or ill-defined signals classified as "hardly visi-
ble bursts" in the e-Callisto Event Report. If some or all of
these doubtful false negatives were not counted, the FN rate
would drop below 10%, even to 5%.

When it comes down to counting burst events, telling a
bunch of individual bursts from a single storm is a delicate

issue. Also, the start and end times of a given storm may
be clear in those observatories where the signal is intense
but hard to define in others; or they may be comnpletely
different in different locations.

Regarding False Positives, their rate (11%) is still signifi-
cant but from the point of view of a Quicklook Tool, the
use of our system implies a huge reduction (of 89%) in the
number of files to be inspected manually.

It is important to recall that this model is still in its first
round. We are currently adding images belonging to com-
mon types of False Positives and False Negatives to the
training dataset.

5 Conclusions

The burst classification model evaluated in this summary
paper, despite not being definitive, gives significantly good
results in terms of data reduction for visual inspection and
promising results in terms of false negatives.

We are optimistic that this model will improve its perfor-
mance in the second round, with a further reduction of False
Positives and, more imortant, of False Negatives –work in
progress, the results of which we expect to present by the
time this conference takes place.

If this goal is achieved we intend to use this method to ex-
pand the e-Callisto Burst Database to the long period of
time (years 2012–2019) for which FITS files are available
but event lists are not. This would allow a thorough cross-
match of e-Callisto events with the already-existing reports
by NOAA.

Let us finish by mentioning a few ideas which can be ex-
plored in the near future. Once the presented model is
brought through the second round, the same process will be
repeated for other observatories. We should also investigate
whether it is possible to build a model capable of recogniz-
ing bursts for several observatories with similar range of
frequencies, interferences, etc. In addition, we are working
on the full automation of the classification system so that
anyone can use it. Finally, it would be very useful to train
networks to classify bursts according to their type (I, II, III,
CTM, ...).
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